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The binding energy of the alpha particle with a velocity- 
dependent potential containing a tensor component 

D. 3LAHANT1, H. L. YADAV and B. K. SRIVAASTAVA 
Physics Department, Indian Institute of Technology, Kharagpur, India 
MS. received 27th May 1970 

Abstract. We make a variational calculation of the binding energy of the alpha 
particle with the velocity-dependent potential of Nestor e t  al. which contains a 
tensor component. The trial wave function used is a mixture of the IS, and 
the principal jD, states, the radial dependence of both these states being Gaus- 
sian. We calculate the Coulomb energy of interaction by the usual perturbation 
method with the potential of Schneider and Thaler w-hich takes into considera- 
tion the finite size of the nucleons. Our calculation gives the values of the bind- 
ing energy and the root-mean-square radius of the alpha particle in reasonably 
good agreement with experiments. 

1. Introduction 
During the past few years Green (1962), Razavy et al. (1957), Nestor e t  al. (1968) 

and others have shown that the hard core in the nucleon-nucleon potential can be 
replaced by a velocity-dependent potential. Such a velocity-dependent potential 
gives as good a fit to relevant two-body data as the hard-core potential does and has the 
additional advantage that perturbation methods can be used in the nuclear many-body 
problems. 

Earlier Jain and Srivastava (1968) made a variational calculation of the binding 
energy of the alpha particle using a two-body central velocity-dependent potential. 
That calculation was not realistic in the sense that the actual two-body potential 
contains a strong tensor component. In  the present investigation we make a variational 
calculation of the binding energy of the alpha particle using the velocity-dependent 
potential of Nestor et al. (1968) which contains a tensor component. 

2. Calculation of the binding energy 
The explicit form of the potential of Nestor et al. (1968) is given by 

in which the superscripts C, T and LS stand for central, tensor and spin-orbit forces 
respectively. 

The velocity-dependent part is 

and has been included only in the central part of the interaction. The  tensor operator 
is 

S12 = (3((r1 . r ) (sZ . r ) - r z ( ( r l  . (r2)}/y2. (3) 
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The  functions in equation (1) are 

for all potentials except the tensor part VjT(r) ,  for which 

The  units of Aj are fm-2, the B, are dimensionless and P / m  = 41.47 MeV fm2. 
The  index j stands for the four parts of the interaction: singlet-even, singlet-odd, 
triplet-even and triplet-odd. 

We do not specifjr the potentials in the odd states since, in our calculation, we use a 
trial wave function which is symmetric in the spatial coordinates of all the four 
nucleons. In  our calculation me use the set 'B' of parameters in the potential of 
Nestor et al. (1968). The values of the potential parameters, in the singlet-even 
state, are 

z4cs = 2.269 fm-2,  K~~ = 0*877fm, Bs = 0.6, Ps  = 0-877fm] 
(6a) ALSs = 0 and xLss = 0. 

In  the triplet-even state these are 

1 (6b) 
Act = 6.825 fm-2 ,  tlCt = 0.598 fm, Bt = 1.0, ,5" = 0.598 fm 
A, = 0.430fm-2, xT = 1920fm, ALSL = 0 and c~~~~ = 0. 

The superscripts s and t stand for singlet and triplet states, respectively. 

(Irving 1953). The  trial wave function may then be written as 
The  trial wave function used is a mixture of the IS, and the principal 5D0 states 

In  equation ( 7 )  i,hs and $D are separately normalized to unity, so that $J is normalized 
to unity and C2 determines the amount of D-state in the mixture. The  complete 
wave functions $Js and $JD in the ISo and the principal 5D, states, respectively, are the 
product of the radial wave functions and the corresponding 
functions, Thus these wave functions are 

+s = +sx 

angular and spin wave 

where Si? is the tensor operator and 

x = J ( X l + X 2 -  -x1-xz+)(x3+x4- - X 3 - X 4 T )  (10) 
is the spin wave function, In  equation (IO) the subscripts 1, 2 denote the neutron 
and 3, 4 denote the proton coordinates. 
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We choose the form of the radial wave functions dS and +D to be Gaussian: 

4 4 

4s = As  e x P ( - b  7 y q ,  4 D  = ~ , e x p ( - i v  F Ti:). (11) 
i < j  z < ,  

Using the transformations (Irving 1953) 

U = +(r4 + r3 - r2 - rl) ,  
and 

me get 

and 

v = (r, - r1)/1,’2, w = (r4 - r 3 ) / q 2  

R = a(r, + 1, + r3 I r4) 

$s = Ns  exp{ - 2p(u2 + v2 + w2)}x  

(12) 

(13) 

- 4(GL ’ * 4 > x .  (14) 

$D = ~ ~ ~ ~ e x p { - 2 v ( ~ ~ + ~ ~ ’ ~ , . ~ ) ) { 6 ( - ~ ~ .  W > + ~ ( G , .  w ) ( G ~ ,  V )  

The normalization constants in the new coordinate system are found to be given by 

We calculate the energy of the alpha particle, excluding the Coulomb energy 
which is treated as a perturbation, using the Rayleigh-Ritz variational principle, by 
minimizing the expectation value of the Hamiltonian, (22) = j $*H$d~ ,  with 
respect to the variational parameters, p, v and C. Now, apart from the Coulomb energy, 

c 
<H > = bv4He = < T )4He + <vs/static h e  + < v$ dep )‘He + < Vs‘:atic )‘He. (16) 

K e  follow Irving (1953) in evaluating the various energy matrix elements in 
equation (16). 

The  Coulomb energy of interaction of the protons in the alpha particle is cal- 
culated by the perturbation method using the potential 

J’pp = - [l - (exp( - 3*36r)}(0.528~ -2,776) - {exp( -2.97~)}(0.644~ + 3-639)] (17) 

of Schneider and Thaler (1965), which takes into consideration the finite size of 
nucleons. This potential gives for the Coulomb energy of the protons in the alpha 
particle 

e2 

Y 

%oul = J $* VPP(Y34)$ d7-a (18) 

3. Root-mean-square charge radius of the alpha particle 

given by 
The  mean-square charge radius of the alpha particle considering point protons is 

1 
( r 2  >oo = Z P  -( 2 ( r p - V )  00 (19) 

I n  the above equation, rp denotes the proton coordinates and R denotes the centre-of- 
mass coordinates. 
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Using equation (12), we get 

and a simple integration gives the mean-square charge radius 

Using the best values of parameters, p, v and C, obtained from the variational calcula- 
tion of the binding energy, we find 

( r2  )oo = 1.66 fm2. (22) 
The mean-square charge radius <r2)oo  is related to the mean-square charge radius 
Rc2 of the alpha particle measured from electron scattering experiments through the 
equation 

where R,  is the root-mean-square radius of the charge distribution of the proton. 
We use equation (23) to calculate ( ( Y ~ ) ~ ~ ) ~ ~ ~ ~  from the values of R, = 1.61 fin 

and R, = 0.8 fm obtained from electron scattering experiments and to compare with 
our calculated value as given by equation (22). The results are shown in the column 3 
of table 1. 

( r2  )oo = Rc2 - Rp2 (23 1 

Table 1. Binding energy and r.m.s. charge radius of the alpha particle 

Binding Coulomb r.m.s. Best values of the parameters in 

(MeL7) (MeV) radius 
Reference energy energy charge the trial wave function 

(fm) p(fm-2) v(fm-2) C 
Present calculation 22.88 0.824 1.29 0.17 0.25 - 0.1 1 
Jain and Srivastaval 30.12 0.826 1.55 
Herndon et aL2 31.0 1.31 
Irving3 31.9 1.0 1-29  
Irving4 24.2 1.30 0.99 
Tang et ~ 1 . ~  30.97 
Experimental 28.3 1.45 0.03 

1 Using a central velocity-dependent potential (Jain and Srivastava 1968). 
Using a central velocity-dependent potential (Herndon et al. 1963). 
Using static central potential without a core (Irving 1951). 

4 Using a static tensor potential without a core (Irving 1953). 
Using a central hard-core potential (Tang et al. 1965). 

4. Discussion 
Our variational calculation gives a value of 22.88 MeV for the binding energy of 

the alpha particle which is lower than the experimental value (28.3 MeV). This is in 
agreement with the variational principle according to which the calculated value of 
the binding energy W is less than or equal to E, the experimental value, provided the 
correct interaction is used. I n  our case, it is possible to reduce the discrepancy bet- 
ween the calculated and experimental values by choosing better trial wave functions. 
A variational calculation with a trial wave function which takes into account correla- 
tions of nucleons is in progress and will be reported later. 
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A comparison between the results of earlier calculations (without hard core or 
velocity dependence) and the experiment shows that the alpha particle with such 
potentials is overbound (Irving 195 1). Introduction of hard core or velocity-dependent 
forces causes the binding energy to change in the right direction but the alpha particle 
remains still slightly overbound (Jain and Srivastava 1968, Herndon et al. 1963 and 
Tang et al. 1965). Our calculation shows that tensor forces, as expected (Blatt and 
JT’eisskopf 1952) further reduce the binding energy by introducing D-states and the 
binding energy becomes consistent with the variational principle. This clearly, 
though indirectly, indicates that two-body nuclear forces must have a tensor compo- 
nent. 

Using the perturbation method of Bolsterli and Feenberg (1956), Goldhammer and 
T-alk (1962) have calculated the binding energy of the alpha particle with a repulsive 
core potential containing a tensor component. Though they obtain a very good value 
for the binding energy (28.4 MeV), their value for the D-state probability is unusually 
large (10.60/,). 

In  connection with earlier calculations of the binding energy of the alpha particle 
it has been noted by Rustgi and Levinger (1957) and independently by Dalitz and 
Ravenhall (Hofstadter 1956) that though the agreement with the binding energy was 
good, the root-mean-square radius was only 213 of the experimental value. I t  is 
satisfactory to note that we get reasonably good values both for the binding energy and 
the root-mean-square radius. 
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